81010

@msgunz3a

Chapter 7 Sampling Distributions

7.1 What is a sampling distribution?

Outcome: I will distinguish between a parameter and a statistic, use a sampling distribution of a statistic to evaluate a claim about a parameter, and distinguish among the distribution of a population and a sample.

$$X = \# \text{ of hits out of 500 times at loat}$$

Binomial $n = 500$

.300(500) $p = .26$
 $150 \quad P(X \ge 150) = .0246$
 $1 - P(X \le 149)$

Warm Up! (Recall Chapter 1)

- 1. When a distribution is skewed to the left, is the mean or median larger? Explain.
- The dotplot below shows the number of televisions owned by each family on a city block.

	*	*	*	*				
	*	*	*	*	*			
*	*	*	*	*	*	*	*	*
0	1	2	3	4	5	6	7	8

Which of the following statements are true?

- (A) The distribution is right-skewed with no outliers.
- (B) The distribution is right-skewed with one outlier.
- (S) The distribution is left-skewed with no outliers.
- (D) The distribution is left-skewed with one outlier.
- (E) The distribution is symmetric.

Parameter vs. Statistic

- On the AP Exam, many students lose points because they cannot distinguish between the two.
- **Parameter:** a number that describes some characteristic of the <u>population</u>
 - Think! P for Population
 - We use p to represent a population proportion
 - We use μ to represent population mean
- Statistic: a number that describes some characteristic of a sample
 - Think! S for Sample
 - We use \hat{p} (p-hat) to represent a sample proportion (used to estimate the unknown parameter p)
 - We use \bar{x} to represent sample mean

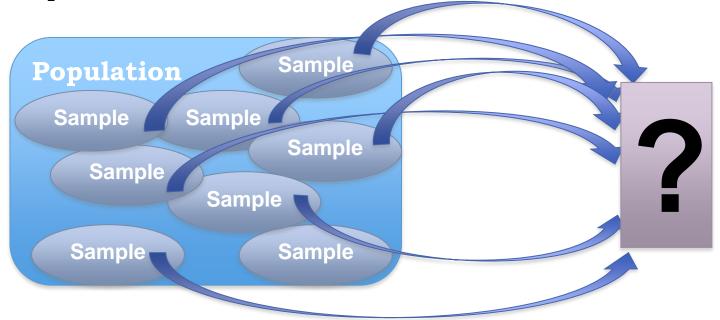
Example

Identify the population, the parameter, the sample, and the statistic in each of the following settings.

a.) The Gallup Poll asked a random sample of 515 U.S. adults whether or not they believe in ghosts. Of the respondents, 160 said "Yes".

Pop: All U.S. adults Prop. of all U.S. Adults who said ses.

Sam: 515 U.S. adults \$169/515 \$1/3

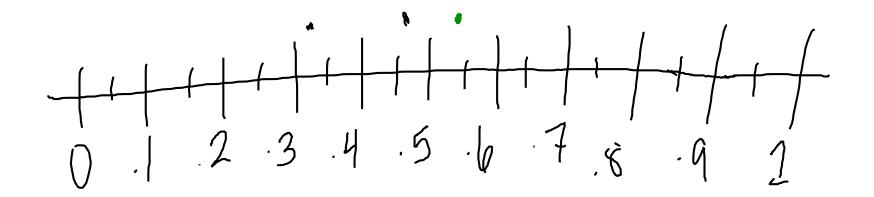

b.) During the winter months, the temperatures outside of the Starnes' cabin in Colorado can stay well below freezing (32°F) for weeks at a time. To prevent the pipes from freezing, Mrs. Starnes sets the thermostat at 50°F. She wants to know how low the temperature actually gets in the cabin. A digital thermometer records the indoor temperature at 20 randomly chosen times during a given day. The

Pup temp at all points throughout the points throughout the points of 38°F.

Sam 20chosen times p 38°F.

Sampling Variability

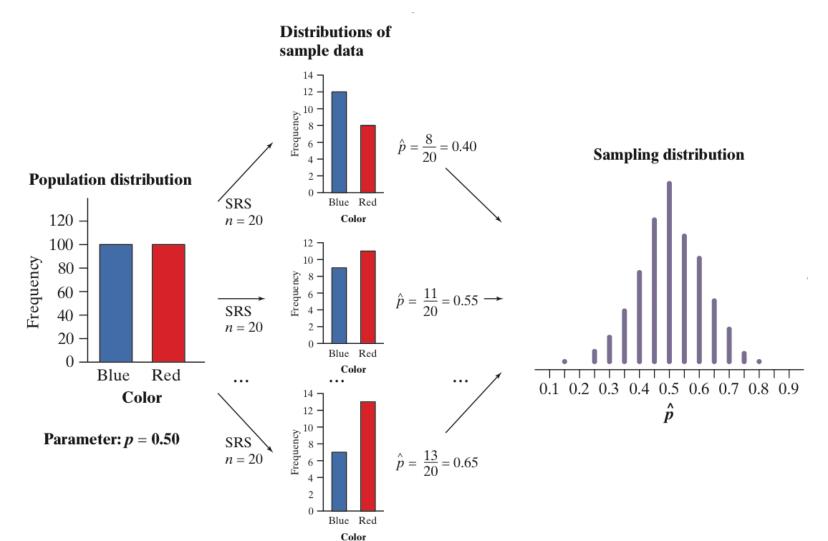
- How can \bar{x} be an accurate representation of μ ? After all, different random samples would produce different values of \bar{x} .
- This basic fact is called **sampling variability**: The value of a statistic varies in repeated random sampling.
- To make sense of sampling variability, we ask, "What would happen if we took many samples?"



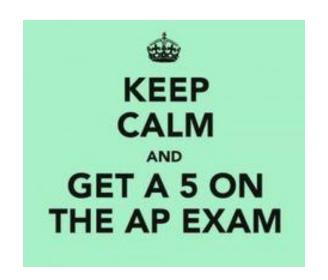
Reaching For Dice

- Each cluster will take a random sample of 15 dice from the bowl at the front of the room and note the sample proportion \hat{p} of **green dice**.
- Each cluster will share the \hat{p} value and the teacher will plot it on the class' dotplot.
- Repeat the process one more time (The more data we have, the better!)
- Describe what you see: shape, center, spread, and any outliers or unusual features.

Skewed left Muni 3-.4


1.2.3456.789

Sampling Distribution


- If we took every one of the possible samples of size n from a population, calculated the sample proportion \hat{p} for each, and graphed all of those values, we'd have a sampling distribution.
- **Sampling Distribution:** the distribution of values taken by the statistic in all possible samples of the same size *n* from the same population.
- In practice, it is usually difficult to take all possible samples of size *n* to obtain the actual sampling distribution of a statistic. Instead, we can use simulations to imitate the process of taking many, many samples.

Sampling Distribution vs. Population Distribution

•**Terminology matters.** Don't say "sample distribution" when you mean sampling distribution. You will lose credit on free response questions for misusing statistical terms.

Biased and Unbiased Estimators

- CENTER

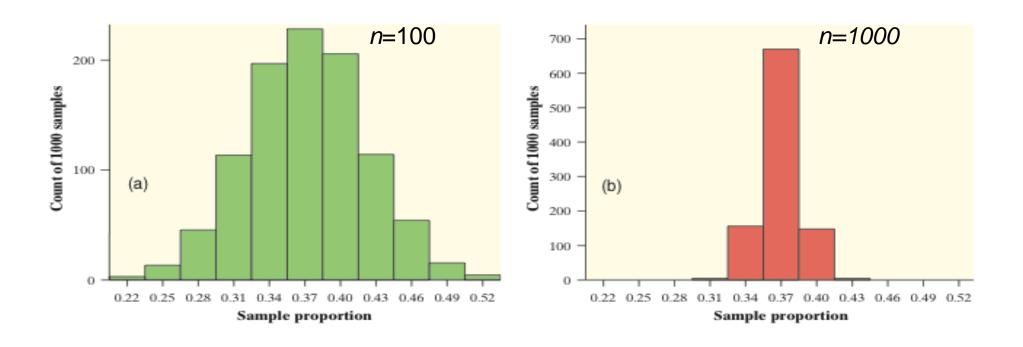
• A statistic used to estimate a parameter is an **unbiased estimator** if the mean of its sampling distribution is equal to the value of the parameter being estimated.

■ BASICALLY: $p = \hat{p}$

• Unbiased does not mean it is perfect. An unbiased estimator will almost always provide an estimate that is *not* equal to the value of the population parameter → It will most likely be VERY CLOSE.

Sampling Heights

- Each student will write his or her height (In inches) neatly on a small piece of cardstock and then pass it forward.
- You will get the bag and take a sample of four cards and record the heights of the four students chosen. Then put the cards back and pass the bag to the next student.
- For your SRS, copy the table below and write in your data.


Height (in.)	Sample mean (\overline{x})	Sample Range (max – min)

- Plot the values of you sample mean and sample range on the two class dot plots.
- Based on the two sampling distributions, which statistic appears to be an unbiased estimator?

Lower Variability is Better!

SPREAD

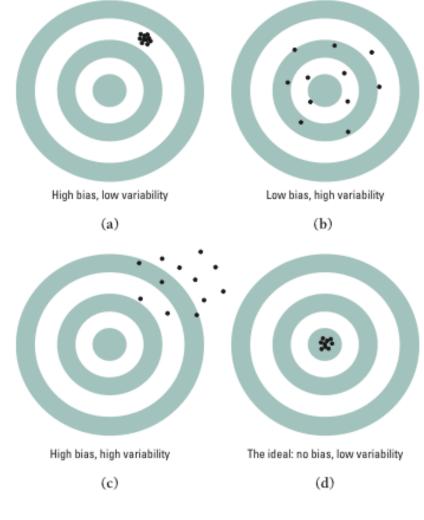
• Larger samples have a clear advantage over smaller samples. They are much more likely to produce an estimate close to the true value of the parameter.

Variability of a Statistic

 Variability of a statistic is described by the spread of its sampling distribution.

- This spread is determined mainly by the size of the random sample.
 - Larger samples give smaller spreads.

Taking a larger sample will reduce variability of a statistic but it will not eliminate bias.


Bias, Variability, and Shape

• We can think of the true value of the population parameter as the bull's-eye on a target and of the sample statistic as an arrow fired at the target.

 Both bias and variability describes what happened when we take many shots at the target.

Bias means that our aim is off and we consistently miss the bull's-eye in the same direction. Our sample values do not center on the population value.

High **variability** means that repeated shots are widely scattered on the target. Repeated samples do not give very similar results.

Exit Ticket! FRQ for a Formative Grade

Drop in the Green, Yellow or Red Folder when you finish.

• HOMEWORK: P. 436-437/ #6, 8, 10, 12, 14.

